v et of (eujtJVL (—éL(J
delta = np.random.choice([-1,1], steps)

Which of the following snippets are equivalent to the above NumPy code

(steps >= 0). All NumPy vectors should be Python lists.
~— Stalar

/C delta = random.choice([-1,1])
)!.delta = steps * random.choice([-1,1])
C. delta = [] B

for i in range(éj%
delta.append(random.choice([-1,1]))

(D) delta = []

for i in range():
delta.append(random.choice([-1,1]))

Answer: D
The NumPy code creates a vector of length size of random integers that are either -1

or 1. So we want to create a list of length size of similar random integers using the
random.choice function.

delta = np.random.choice([-1,1], steps)
walk = np.cumsum(delta)

Which of the following snippets are equivalent to the above NumPy code (steps is >= 0).
NumPy vectors should be Python lists.

A. pos =0 B. walk = []
walk = [] for i in range(steps):
for i in range(steps): delta=random.choice([-1,1])
wadtnﬂ pos += random.choice([-1, 1]) walk.append(delta)
Walk.append(pos)
e
(Htevmediate
C. walk = [] D. pos = ©
for i in range(steps): for i in range(steps):
if random.randint(@,1) == ©: pos += random.choice([-1, 1])
walk.append(-1)
else:

walk.append(1)

Answer: A

delta is an array of randomly sample +1, -1, the cumsum function computes the
cumulative sum, i.e., for [a, b, c] it computers [a, a+b, a+b+c]. Answer A implements
the latter via the pos accumulator.

SCauiV’

index = np.argmax(walk)

Which of the following snippets are equivalent to the above NumPy code?

/‘. index = [] J’(index = []

for i in range(l,len(a_list)): for i in range(1,len(a_list)):
if a_list[i] > a_list[i-1]: if a_list[i] > a_list[index[-1]]:
index.append(i) index.append(i)
C. index = © D. index = ©
for i in range(1l,len(a_list)): for i in range(1,len(a_list)):
if a_list[i] > a_list[i-1]: if a_list[i] > a_list[index]:
index = 1 index = 1
Answer: D

We want to find the index of the largest value in the entire list. That will be a scalar, so
A and B are incorrect. Answer C, would return the last index where the item was
larger than its immediate predecessor (not the largest overall).

returns = np.cumprod(np.random.laplace(mean, scale, 240))

Which of the following snippets are equivalent to the above NumPy code? Assume there is a
laplace function that has the mean and scale as arguments and returns a single sample.

A. returns = []
for i in range(240):
sample = laplace(mean,
returns.append(sample)

C. returns = []
prod = 1.0
for i in range(240):
sample = laplace(mean,
returns.append(sample)
prod *= sample

scale)

scale)

returns = []

prod = 1.0

for i in range(249):
sample = laplace(mean, scale)
prod *= sample
returns.append(prod)

returns = []

prod = 1.0

for i in range(240):
sample = laplace(mean, scale)
returns.append(prod)
prod *= sample

Answer: B

The “cumprod’ function computes a _cumulative_ product. Answers A and C only
record the samples. Answer D has a "off by one", that is starts with the initial values

and doesn't record the final product.

